Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Significance We have developed an Africa-wide synthesis of paleoenvironmental variability over the Plio-Pleistocene. We show that there is strong evidence for orbital forcing of variability during this time that is superimposed on a longer trend of increasing environmental variability, supporting a combination of both low- and high-latitude drivers of variability. We combine these results with robust estimates of mammalian speciation and extinction rates and find that variability is not significantly correlated with these rates. These findings do not currently support a link between environmental variability and turnover and thus fail to corroborate predictions derived from the variability selection hypothesis.more » « less
-
Abstract Terrestrial‐marine dust fluxes, pedogenic carbonate δ13C values, and various paleovegetation proxies suggest that Africa experienced gradual cooling and drying across the Pliocene‐Pleistocene (Plio‐Pleistocene) boundary (2.58 million years ago [Ma]). However, the timing, magnitude, resolution, and relative influences of orbitally‐driven changes in high latitude glaciations and low latitude insolation differ by region and proxy. To disentangle these forcings and investigate equatorial eastern African climate across the Plio‐Pleistocene boundary, we generated a high‐resolution (∼3,000‐year) data set of compound‐specificn‐alkane leaf wax δ2H values—a robust proxy for atmospheric circulation and precipitation amount—from the HSPDP‐BTB13‐1A core, which spans a ∼3.3–2.6 Ma sequence in the Baringo‐Tugen Hills‐Barsemoi Basin of central Kenya. In combination with the physical sedimentology, our data indicate that precipitation varied strongly with orbital obliquity, not precession, during the late Pliocene, perhaps imparted by variations in the cross‐equatorial insolation gradient. We also observe a marked shift toward wetter conditions beginning ∼3 Ma that corresponds with global cooling, drying in western Australia, and a steepening of the west‐east zonal Indian Ocean (IO) sea surface temperature (SST) gradient. We propose that northward migration of the Subtropical Front reduced Agulhas current leakage, warming the western IO and causing changes in the IO zonal SST gradient at 3 Ma, a process that has been observed in the latest Pleistocene‐Holocene but not over longer timescales. Thus, the late Cenozoic moisture history of eastern Africa is driven by a complex mixture of low‐latitude insolation, the IO SST gradient, and teleconnections to distal high‐latitude cooling.more » « less
-
Abstract Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 yearsbp(episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 yearsbp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence ofHomo sapiensin eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 yearsbp) could have facilitated the global dispersal ofH. sapiens.more » « less
-
Abstract. The primary scientific objective of MexiDrill, the Basin of MexicoDrilling Program, is development of a continuous, high-resolution∼400 kyr lacustrine record of tropical North Americanenvironmental change. The field location, in the densely populated,water-stressed Mexico City region gives this record particular societalrelevance. A detailed paleoclimate reconstruction from central Mexico willenhance our understanding of long-term natural climate variability in theNorth American tropics and its relationship with changes at higher latitudes.The site lies at the northern margin of the Intertropical Convergence Zone(ITCZ), where modern precipitation amounts are influenced by sea surfacetemperatures in the Pacific and Atlantic basins. During the Last GlacialMaximum (LGM), more winter precipitation at the site is hypothesized to have beena consequence of a southward displacement of the mid-latitude westerlies. Itthus represents a key spatial node for understanding large-scalehydrological variability of tropical and subtropical North America and isat an altitude (2240 m a.s.l.), typical of much of western North America. In addition, its sediments contain a rich record of pre-Holocene volcanichistory; knowledge of the magnitude and frequency relationships of thearea's explosive volcanic eruptions will improve capacity for riskassessment of future activity. Explosive eruption deposits will also be usedto provide the backbone of a robust chronology necessary for fullexploitation of the paleoclimate record. Here we report initial resultsfrom, and outreach activities of, the 2016 coring campaign.more » « less
An official website of the United States government
